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Some steady motions of two gravitating bodies, one of them a spheroid and the other a 
gyrostat, are considered. The cases of a dynamically asymmetric and dynamically sym- 
metric gyrostat are investigated. Sufficient conditions of stability are derived for the 

case of a dynamically symmetric gyrostat. 

1. Let us introduce the following notation: o&t& is a stationary coordinate system 
(see Fig. l), GqIqzqs is a Koenig coordinate system with its origin at the center of mass 
G of the spheroid + gyrostat system whose axes are parallel to those of the stationary co- 

ordinate system, Cr,rsrs is a moving coordinate system whose axes lie along the prin- 

cipal central axes of inertia of the gyrostat, Py,y,y, is a moving coordinate system 

Fig. 1 

whose axes lie along the principal central axes of inertia of the spheroid (the axis b(r lies 
along the axis of dynamic symmetry of the spheroid), RI, u, x and R,, u, - x (where 

R, + R, = R) are the spherical coordinates of the centers of mass of the gyrostat and 

spheroid, respectively, relative to the Koenig coordinate system, u is the longitude, x 
is the latitude, a, B, ‘p are the Krylov angles, p is the angle of deviation of the dyna- 

mic symmetry axis yt of the spheroid from the plane Q passing through the line PC of 

the centers of mass and the axis qs, a ls the angle between the axis 1s and the projection 
of the axis y, onto the plane Q, cp is the angle of proper rotation of the spheroid, ar, PI, 
(~1 are the Krylov angles, where PI’ is the angle of deviation of the axis rs of the gyro- 
stat from the plane Q. aI is the angle between the axis% and the projection of the axis 

zs onto the plane Q, ‘pl is the angle between the axis r3 and the line of intersection of 

the planes Q and Cr,r,, 8, p2, p3 are the cosines of the angles between the axis q, and 

the axes rlr rI, rs, respectively, yI, yz* ys are the cosines of the angles between the radius 
vector R, of the center of mass of the gyrostat with respect to the point G and the axes 

III =2! rs, respectively, .i, v’, 7” are the cosines of the angles between the radius vector 
It, of the center of mass of the spheroid with respect to the point G and the axes Y,, ~2, 

y3 ,respeCtively. f is the graviation constant, Ml, M,; A,, A,, A,; El, B,. B, 

(B, = B,) are masses and principal central moments of inertia of the gyrostat and sphe- 
roid, respectively, k,, k2, k, are the projections of the gyrostatic moment on the axes 
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Tlf I-2, *s; 01, wq, o3 are the projections of the absolute angular velocity of the gyrostat 

on the same axes, 62,, Q,, R, are the projections of the absolute angular velocity of the 

spheroid on the axes y,. yzr !/a- 
The kinetic energy 7’ of the spheroid + gyrostat system is given by 

T = ‘12 Mo (R” + I(s” COS’ x + Rzx”) $ ‘12 ~ Ai [j’pi + Fi (x’, Pj’, 7j’)]’ + 
1-l 

3 

+ ~ ki [“Pi + Fi (X’, Bj’, rj’)] + B1 [3” (sin2 31 + COS’U sir? P) + 

I=1 

+ 25’p’sin a - 23’a’ cos a sin p cos j3 + a7 cos* p + fP) + & [ ~‘2 co9 a co9 p + 
+20’(p’cos~cos~+23’a’coszcos~sin~+(p’4+2~’~’sin~+~‘Ssin~~] : (1.1) 

i 
MrMz 

M”=Mz+Mn ) 
where the functions Fi (x’, pj’, rj’) vanish for x’ = PI’ = ~1’ = 0 (4 j = i, 2, 3). 

The potential energy of the Newtonian attraction forces is given by the expression p] 

3 M,f 
+ z I Bl[sinz(r-x)sinCp+cos*(r-x)1+ (1.2) 

+ Bz sin2 (x - X) COS’P - 
2B1+ Bs \ 

3 j 

2. The equations of motion of the spheroid + gyrostat system can be written in the 

form of Lagrange equations, where the Lagrangian coordinates Q{ are the variables R, x, 
U, a, aI. fl, PI, 9, 01. These equations have the energy integral 

T + II = h = const 

for the motion of the system relative to the Koenig axes. 

Moreover, as we see from (1.1) and (1.2). the coordinates u and p are cyclical and 
correspond to the first integrals 

aL 7= 
as MOWS COS’ X f i {AtPi [s’P$ f Fi (x’, Pj 8 7j’)I + k,B,) f 

1=1 
+ B1 [s’ (sina a + ~0s~~ sin’ p) -3s’cos3Lsin$cosJ +P.sinx] + 

+ & [s’ COS* 5 ~09 p + ‘p’ cos I cos p + 2’ cos z cos P sin 8) = K, 

aL --T= 
* 

B: (3. cos ‘x cos p + Q’+ 3’ sin 8) = K, 
* 

(2.1) 

(2.2) 

which express the constancy of the moment of momenta of the system (in its motion 
relative to the Koenig axes) with respect to the axis n4 and the constancy of the moment 

of momenta of the spheroid (In its motion relative to the Koenig system) with respect 
to its proper axis of rotation y,. 

The second integral implies that the projection of the angular velocity of the spheroid 
on the axis,y, is constant. 

Ignoring the cyclical coordinates o and cp, we construct the Routh function 

R=L-s3’Kg-cp’K~=R:!+R*+Ro (Ro=-8’) 

Here R, is a form of degree i in the generalized velocities R’, x’, a’, a{, fl’, PI’, 

h’. 
Making use of the relations 
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P1’+w+Psa=l. 71’ + ^12f + 7s’ = 1 

X = BITI + Parr + ITS -sin x = 0 

we can rewrite the altered potential energy of the spheroid + gyrostat system as 

K2 c1 
W (R, x, a, P, PI, Ps, +rt, 72) = z + z + IJ 

K = K, - K, cos a cos p - kl& - k, (1 - p12 -p,s)‘h - k,p, 
.S = MO Ra cosa% i- B, (sins a + cos2 a sina 6) + (A, - A,) pi2 j- (A, - A,)pss + A, 

Introducing the Lagrange multiplier 1, we can determine the steady motions of our 
mechanical system from the equation bW1 = 0 as the fixed points of the function 

wi = Wflx. 
This equation has the following solutions (z. is the value of the function z in the COI- 

responding steady motion) : 

R = RO, x = 0, a - 0, 6 - 0, PI = sin e0 

& = 0, yt = 0, yz = 0. A = 0 

R = R,, x = 0, a = 1/an, 6 = 0, KV = 0, 6i = sink& 

6s = 0, yi = 0, y* = 0, h = 0 

R = Ro, x = 0, a = 0, cos p = COSP, = K,lo,B,, PI = sin Cl0 

6s=O, ,ys=o, yz=o, A=0 
ooK, 

(2.3) 

(2.4) 

(2.5) 

R = Ro, x = xo, coa z= cos uo = oo,~l + 3,~iR-8 (pi _ &) + 6 (2.6) 

p = 0, 6i = 0, 6s = sin (6, + x0), yi = 0, y* = - sin e. 

Here x0 and d are quantities of the order of T/R2 (I is the characteristic 

of the smaller body). 

We note that if 
M, (A, - A,) sina 6, = Ml (B, - BJ sin* a0 

then x0 = a = 0 in solution (2.6). 
Solutions (2.3)-(2.5) exist under the conditions 

dimension 

MoooaRoS = f {Ml Mn - a/a R;’ [@As - Al - At) Mt + (BI - B,) Ml]) 

ks=O. kn sin e. - kl cos e. = I/* (4 - At) o. sin’ e. 

Solution (2. Sj exists under the conditions 

~,~,s~,s c&X0 = f (M,M, - v, M,R;~ [(A, - A,) sin* 0, + % PI, - 4 - AdI - 

-s/% M,R;~ [B, cod (a0 -x0) + B, sin2 (a0 - XO) - r/s (281 -I &)I) 

k, = 0, 00 [k, sin (e, + x0) - k9 COS (0, + %O)l $ ‘/s (A2 - A,) @O'x 

XsinZ (e, + x0) + Va f M,RmS (A, - A .v) sin:! 00 = 0 

M,o,*sin 2x, + 31 M,R;~(F~~ --42)sin2 (alo--) (A2 - AS) sin 2eo+ 

+ 3fM,Rih (B, - 8,) sin2 (a0 - x0) = 0 

Solutions (2.3)-(3.6) describe the rotation of the spheroid and gyrostat about their 
common center of mass G at the angular velocity o. = (K/S), ; in the case of solutions 
(2.3). (2.5). (2.6) the spheroid also rotates about its dynamic symmetry axis y, at the 
proper rotation velocity 
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cp’ = K,lB, - 00 co9 cr, cos p. 

In the case of solution (2.4) ‘p’ = 0. For solutions (2.3)-(2.5) the planes of motion 
of the centers of mass of the spheroid and gyrostat coincide and the axis of inertia ~3 of 

the gyrostat is directed along the line of centers of mass PC. The axis yz of proper rota- 

tion of the spheroid is perpendicular to the orbital plane for solution (2.3). lies along the 

line of centersPC for solution (2.4), and is perpendicular to the line of centers PC, for- 

ming the constant angle PO with the axis ?l, for solution (2.5). 

For solution (2.6) the line PC of the centers of mass of the gyrostat and spheroid forms 
the constant angle x,, with the orbital planes of the centers of mass of the spheroid and 
gyrostat which are parallel (the distance between them is equal to HO sin x0 and is on 
the order of P / H) ; the principal axis of inertia tr of the gyrostat is directed along the 

velocity vector of its center of mass, and the quantity f10 is equal to the angle between 
the axes tl, and %. Such motions in the case of a gyrostatic moving in a central New- 
tonian force fleld were first obtained by Stepanov yZ] and Roberson 13. 41. 

8, The sufficient conditions of stability of the above steady motions of a spheroid 

and gyrostat are obtainable as the Sylvester conditions of positive definiteness of the 

second variation of the function W,. 

It is easy to verify that of the conditions of stability of the steady motions of the sphe- 

roid +gyrostat system with respect to the variables 

R, x, a, B, fir, Bo. IL y1, Ytr Ysr R-9 x’, 0’9 Q’s P-9 f#‘s PI’. B’*, Bs’, Yl’t Ys’, ys 

the conditions (aOWJ&c*),, > 0, (a*WlIaR2)o > 0 are always fulfilled if the dimensions 
of the bodies are much smaller than the distance between their centers of mass; the 

remaining stability conditions are reducible to the following forms. 

For solution (2.3). 

(B2 - BI) 00 + &qp’ > 6, 00 (Bz - BI) 
M? + 3Mo 

M 
I +B2cp’>O (3-i) 

for solution (2.4). 
B, > B,, A, > As, Az>A, (3.2) 

A2 + m+>A2. A2+&>~~1+~ 

for soludon (2.5) 
Bz > Bx, Al > Aa, AZ>& 

A2 + & > As, Aa + o. c”,?ss e. > A1 + ’ 
for solution (2.6) 

B, > B,, Al-AA,sin28,-AA,cosa8,>0, (A,-AA)(i-tga60)>0 

(A2 - Aa)(~+$Weo)+ ooc~2go>0 (3.4) 

(4 - A2 sin2 80 AZ-AI+& 
3Mo 

+ K (Al - AZ) (AS - AS) sin’ 00 > 0 

where 

6 = 
31 (A1 - Az)2 sin* 00 

So&8 (a~wl/aRf)o 
~~~~ - & [(2As - AI - A21 M2 + @a- B2) M2]} 

In analyzing the above sufficient conditions (3.1)-(3.4) of stability of steady modons 
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(2.3)-(2.6) of the spheroid + gyrostat system, we see that each group of sufficient con- 
ditions of stability consists of two groups ; one group contains the moments of Inertia of 
the spheroid alone, the other the moments of inertia of the gyrostat alone, Each of these 

groups constitutes stability conditions similar to those obtained by Rumiantsev 153 for the 
corresponding motions of a symmetric satellite and gyrostat satellite about a fixed 

attracting center. In our case the role of the attracting center is played by the center 
of mass G of the system. 

4. Let us consider the case of a dynamically symmetric gyrostat when Al = A t #A, 
and k, = kJ = 0, k, = const. 

In addition to integrals (‘2.1) and (2.2) our system also has the integral 

aL/@i = A, (3’ cos a, cos PI + rp,’ + ar’sin PI) + k, = K~I (4.1) 

which expresses the constancy of the projection of the moment of momenta of the gyro- 

stat on its dynamic symmetry axis 2~. 

Ignoring the cyclical coordinates u, ‘p, w, we obtain the following expression for the 

altered potential energy U of the system: 

where 

Kl’ KPp’ 
u (R x, a, 8, al, PI) = z + x+ 

(Kq, - ktS 
2.4* + II 

n = 31 2a [A~ [sin* (at - x) sin’ fii + cost (QI- xl] + A sin’ (al - xl cos’61 - 

2A1~Az}+~~(BI[sin~(a-x)sin1~+cas~(a-~)~+ 

+ Bz sin’ (a - x) co.9 fi - 
2B1-k BS 

3 
SI = MJP cos% -I- At (sin* a1 + cosTarsin’ fir) + BI (sin* a + ~0s’ a sin’ fi) 

KI = K, - K,cosa cosp - KOIcosal cos $1 

The steady motions of the system can be determined from the equation 

bU=O 
This equation has the following solutions: 

R = R,, x = 0, a = 0, p = 0, a1 = 0, fir = 0 (4.2) 

R = RO, x = 0, a = 0, cos p = K&+,B1, a1 = 0, cos PI = K,,lo,A1 (4.3) 

R = If,, x - 0, a = 0, B = 0, al = 0, cos & = K,,lo,A1 (4.4) 

R = Ro,x = 0, a = 0, cos b = KJo,Bl, al = 0, pl = 0 (4.5) 

R = R,, x = 0, a = 0, B = 0, al = '1% n, Br = 0, K,, = 0 (4.6) 

R = R,, x = 0, a = If2 n, p = 0, K, = 0, a1 = 0, fil = 0 (4.7) 

R = RO, x = 0, a = 0, cos B = K,fo&, al = 'fz n, & = 0, K,, = 0 (4.8) 

R = R,, x = 0, a = VI n, I3 = 0, Kv = 0, al = 0, cos pl = K,,Io,A1 (4.9) 

R=Re, x=x& cosa=cosao= 9Fo 
CJQBI-~/MIR,~(BI-B~) 

$62, p=o 

"0Kvi cmalg= 
q,'Al-3fM~R,-S(A~- AJ+"' "=O 

(4.10) 
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Solutions (4.2)-(4.9) exist under the condition 

MadRo’ = f wan - “/n Ro” [(A, - Al) MI + (Bz - Bl) Ml]) 

and solution (4.10) under the condition 

JJ~SR~S cos~ xo = f I M& - $ [ A~ cod (al0 -x0) + AS sins (alo - xo) - 2A1+ Ao 

3 
I 

- 

MooosRs6 ain 2x, + 31 Ms (Al - A,) sin2 (aI0 - x0) +; 

+31M1 (BI - B,) sin2 (a0 - xs) = 0 

where x0, b, and ij,:are quantities on the order of P / Rs. 
These solutions describe the steady motions of the spheroid and dynamically symmet- 

ric gyrOStat about their common center of mass C at the angular velocityo, c (&/&y,k, 
with the spheroid rotating about its axis of symmetry 1s at the proper rotation velocity 

q’ = KJBs - o. cos a cos fi 

and the dynamically symmetric gyrostat rotating about its axis of symmetry Z, at the 

proper rotation velocity cp’ = K,,/A, - o. cos a1 cos & 

In solutions (4.2)-(4.9) the planes of motion of the centers of mass of the spheroid 
and dynamically symmetric gyrostat coincide. In solution (4.10) these orbital planes 

are parallel, lying at the distance R, sin x0 on the order of P/R from each other. 

For solution (4.2) the axes of proper rotation of the spheroid 1s and symmetric gyrostat 
zs are perpendicular to the orbital plane. This solution was first obtained by Kondurar’ 

IS. 71. 
For solution (4.3) the axes of proper rotation of the spheroid p, and symmetric gyrostat 

z, are perpendicular to the line of centers PC and form the constant angles PO and &a 

respectively, with the axis Q. 

For solution (4.4) the axis of proper rotation ~/r of the spheroid is perpendicular to the 
orbital plane, and the axis of proper rotation Z, of the symmetric gyrostat perpendicular 

to the line of centers PC, forming the constant angle pro with the axis 1s. 
For solution (4.5) the axis of proper rotation 1s of the spheroid is perpendicular to the 

line of centers PC and forms the constant angle PO with the axis a ; the axis of proper 
rotadon z, of the symmetric gyrostat is perpendicular to the orbital plane, 

For solution (4.6) the axis of proper rotation y, of the spheroid is perpendicular to the 

orbital plane, and the axis of proper rotation zs of the symmetric gyrostat is directed 
along the line of centers PC ; in this case the gyrostat does not rotate about the axis zs. 

For solution (4.7) the axis of proper rotation ys of the spheroid is directed along the 

line of centers PC, but the spheroid does not rotate about the axis y,.; the axis of proper 
rotation z, of the symmetric gyrostat is perpendicular to the orbital plane. 

For solution (4.8) the axis of proper rotation y, of the spheroid is perpendicular to the 
line of centers PC and forms the constant angle PO with the axis % ; the axis of proper 
rotation Z, of the symmetric gyrostat is directed along the line of centers, but the gyro- 
stat does not rotate about the axis 2,. 

For solution (4.9) the axis of proper rotation I/% of the spheroid is directed along the 
line of centers, but the center does not rotate about the axis y2 ; the axis of proper rota- 
tion 2, of the symmetric gyrostat is perpendicular to the line of centers and forms the 
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constant angle &s with the axis Q. 
For solution (4.10) the line of centers PC forms the constant angle xn with the orbital 

planes of the centers of mass of the spheroid and symmetric gyrostat; the axes of sym- 
metry y, of the spheroid and zs of the gyrostat lie in the plane Q and form the constant 

angles a, and alo, respectively, with the axis Q. 

6. The sufficient conditions of stability of the above steady motions of a spheroid 

and symmetric gyrostat are obtafnable as the Sylvester conditions of positive definiteness 

of the second variation of the function U. These conditions can be expressed as follows: 

for solution (4.2). 

Kq > Bloo, K, - &a, + 3Mac&f;’ (BI - BS > 0 

Kv, > ANO, Ko, - Am + 3Mo00M;’ (AZ - A3 > 9 

for solution (4.3). 

B, > BI, -%>A1 
for solution (4.4). 

Kq > &oo, K,--~+3MoooM;‘(Bt--B3>0, As>AI 

for solution (4.5). 

Bz > B1, K,, > Aloo, Kqr - Aloo + 3M0ooM;~ (AZ - A3 > 0 

for solution (4.6). 

Kc> BIW. K,+- Bl% + 3Ma+f;’ (Bs - BS > 6, A1 > At 

for solution (4.Q 

BI > B,, KV, > AI 00, KV, - Al q, + 3M,o,M;* (A, - Al) > 9 

for solution (4.9). 

B, > BI, &>A, 
for solution (4.9), 

BI > B,, AI>& 

for solution (4.10). 
BI > B,, Ar>As 

(5.1) 

(5.2) 

(5.3) 

(5.4) 

(5.5) 

(5.6) 

(5.7) 

(5.8) 

(5.9) 

Conditions (5.1)-(5.9) are the sufficient conditions of stability of steady motions 

(4.2)-(4.10) with respect to the variables 

R, x, a, 8, al, 81, R’, x’, o*, a*, B’, C, or’, &‘, W’ 

By virtue of Kelvin’s theorem [8], steady motions (4.2)-(4.10) become unstable if 
we replace one of the inequalities in conditions (5.1)-(5.9) by one of opposite sign. 
Steady motfons (4.4)-(4.7) are also unstable if we replace all three inequalities ln con- 

ditions (5.3)-( 5.6) by inequalities of opposite sign. Steady motion (4.2) is unstable If 
we replace any three inequalities of condition (5.1) by inequalities of opposite sign. 

The author is grateful to V. V. Rumiantsev for his comments on the present study. 
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We consider a system with n degrees of freedom, of the following form : 
(kl) 

Y. . = 5,2, + py,, (2, Y. q + py*, (2. Yv t) + -3. + (P*o (r) + cL’pa1 w + *** 

x =_ (21, . . . , ZJ, Y = (Yl. *** . Y,) (Y =I, . . . , 71) 

Here X#r ,..., Y@I ,... are polynomials of an arbitrarily high degree in z and y with 
continuous coefficients which are Zn-periodic in t . The functions j*,,,..., ‘plo,... are 

continuous and have the same period. Quantity p is a small parameter. We assume that 
both internal and external resonance are present in the system. 

There exist various well worked out methods of investigating the oscillations of quasi- 

linear nonautonomous systems in resonance cases (method of small parameter, method 
of averaging, e. a. ). these reduce the problem of constructing the oscillations accurate 
to the first degree of the small parameter to obtaining solutions of, so called, fundamen- 

tal (generating) amplitude equations. In the case of a system with several degrees of free- 
dom, these equations represent a system of nonlinear algebraic equations, for which gene- 
ral solution does not esist. Thus, one problem leads to another which is no less complex. 

In the present paper we use the results of n, ‘21 to develop a method of constructing 

both periodic and almost-periodic solutions. This allows us to obtain the values of the 
fundamental amplitudes from a system of linear algebraic equations, when the order of 
the highest form accompanying p is not greater than three. If X,1 and Y,r contain terms 
of the order higher than three, then the equations defining the fundamental amplitudes 
will be also nonlinear, but simpler than those appearing in the method of small parame- 
ters, method of averaging, etc. 


