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Some steady motions of two gravitating bodies, one of them a spheroid and the other a
gyrostat, are considered, The cases of a dynamically asymmetric and dynamically sym-
metric gyrostat are investigated, Sufficient conditions of stability are derived for the
case of a dynamically symmeturic gyrostat,

1, Let us introduce the following notation: O%E,%, is a stationary coordinate system
(see Fig.1), Gyym.s is a Koenig coordinate system with fts origin at the center of mass
G of the spheroid + gyrostat system whose axes are parallel to those of the stationary co-
ordinate system, Cz,z,zs is a moving coordinate system whose axes lie along the prin-
cipal central axes of fnertia of the gyrostat, Py,y.yy is a moving coordinate system
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Fig, 1

whose axes lie along the principal central axes of inertia of the spheroid (the axis ¥, lies
along the axis of dynamic symmeury of the spheroid), R;, ¢, % and R,, o, — x (where
R, + R, = R) are the spherical coordinates of the centers of mass of the gyrostat and
spheroid, respectively, relative to the Koenig coordinate system, o is the longitude, %
is the latitude, @, B, @ are the Krylov angles, B is the angle of deviation of the dyna-
mic symmetry axis y, of the spheroid from the plane @ passing through the line PC of
the centers of mass and the axis 1, « is the angle between the axis n, and the projection
of the axis y, onto the plane @, ¢ is the angle of proper rotation of the spheroid, a,, 8,,
@, are the Krylov angles, where B, is the angle of deviation of the axis z, of the gyro-
stat from the plane Q, @, is the angle between the axis); and the projection of the axis
z, onto the plane Q, ¢, s the angle between the axis z; and the line of intersection of
the planes Q and Cz,z,, fy, B,, B, are the cosines of the angles between the axis n, and
the axes z,, 1,, 7, respectively, v, v.. 73 are the cosines of the angles between the radius
vector R, of the center of mass of the gyrostat with respect to the point ¢ and the axes
I, %, Z3,Tespectively, ¥, ¥', 7" are the cosines of the angles between the radius vector
R, of the center of mass of the spheroid with respect to the point G and the axes y;, ¥2,
y; ,respectvely, f is the graviation constant, M,, M,; A,, A,, Ay; B,, B;, B,
(B, = B,) are masses and principal central moments of inertia of the gyrostat and sphe-
roid, respectively, k,, k,, k; are the projections of the gyrostatic moment on the axes
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1), 4y, 73, 0, ©,, 0, are the projections of the absolute angular velocity of the gyrostat
on the same axes, Q,, Q,, Q5 are the projections of the absolute angular velocity of the
spheroid on the axes ;. ¥s. ¥s-
The kinetic energy 7 of the spheroid + gyrostat system is given by
3

T =1y Mo(R? + Rscos®x + Rox®) + 1z { S A58, + FL 00, B 10 +

i=1

3
+ 2 k(3B + F, (¢, 3%, 1;)] + B1[52 (sin? 2 - cos? a sin?B) +
i=1

+25B'sina —23’'a’ cosasinBcosB + a?cos?B 4 B) 4 Ba[3Fcos? a cos?B 4

+ 26" cos xcos3 4 23'a’cos 2 cos Bsin3 4 @ 4 2¢'x"sin3 + 2Tsin?B]  (L.1)
MM,
(M‘,=—----——M1 I, )

where the functions Fy (x', By, vs) vanish for ¥ = By =y, =0(,j =1, 2, 3).

The potential energy of the Newtonian attraction forces is given by the expression 1]

IM.f ¢ A+ A+ A MM,
H=T;II-A1T11+‘49T22+A3T32—' s §+ 3]" IHI
IM,f R .
+ W{B;[sm’(x—x} sin®f3 4 cos? (x — x)] - (1.2)
2B; + B, l_

+ By sin® (2 — x) cos*B — 3 |
2, The equations of motion of the spheroid + gyrostat system can be written in the
form of Lagrange equations, where the Lagrangian coordinates g¢; are the variables R, x,

o, a, a;, B, B1, ¢, ;- These equations have the energy integral

T 4 Il1 = h = const
for the motion of the system relative to the Koenig axes,
Moreover, as we see from (1, 1) and (1, 2), the coordinates ¢ and @ are cyclical and
correspond to the first integrals

aL
aj. =

3

MOR’G COSz)( + Z (A‘B‘ls.ﬁ‘ + Fi ()(', B)' ’ TJ)] +k(B‘) + 9
i=1 (2.1)
+ By [5" (sin*a 4 cos® a sin?B) — a’cos a sinB cos 3 4 B"sin x] +

+ B [5" cos®a cos*B 4 @ cos x cos B 2 cos x cos BsinB) = K|,
% =B, (s’ cosacosB + @4 2" sin3) ={(o (2.2)

which express the constancy of the moment of momenta of the system (in its motion
relative to the Koenig axes) with respect to the axis n, and the constancy of the moment
of momenta of the spheroid (in its motion relative to the Koenig system) with respect
to its proper axis of rotation y,.

The second integral implies that the projection of the angular velocity of the spheroid
on the axis:y, is constant,

Ignoring the cyclical coordinates o and ¢, we construct the Routh function

R=L—§.K°—Q.K°=R:+R1+Ro (Ro:—-—W)
Here R; is a form of degree i in the generalized velocities R', %', &', a, §°, B,

[/
Making use of the relations
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B +B:* + B =1, N+ 1t 1t =1
X =BiT1 4+ Ba1s + BaTs —sinx = 0
we can rewrite the altered potential energy of the spheroid + gyrostat system as
K K
W (R, %, aB, BB 1, 1) =35 + 35, + 0

K= K,— K,cosacosP — kify — k; (1 — B2 —Bs?)'"" — kss

S = M, R? cos™ + B, (sin? @ + cos? @ sin? B) + (4, — 44) By + (4, — A,)Bs* + 4,
Introducing the Lagrange multiplier A, we can determine the steady motions of our

mechanical system from the equation §W; = 0 as the fixed points of the function

Wl = w + A'x .
This equation has the following solutions (zy is the value of the function sz in the cor-

responding steady motion):
R=R,, =0, a=0, =0, P, =sinb,

Bs=0, =0, =0, =0 (2.3)
R=R;,, =0, a=1Y;n, p=0, K, =0, p,=-sind,
Bs=0, vw=0 y,=0, A=0 (2.4)
R=R, %x=0, a=0, cosP=rcosBy = K, /0,8,, P, =sinby
ps=0, ¥1=0, y,=0, A=0 (2.5)
(l)oK‘o
(2.6)

R = Ry, ® = %9, COS % = COS ag = @ B1 F 3/ MR (B, — By) +6

B=0, =0, PBy=sin (0, + %), 7y, =0, v, = — sin b,
3f M, i
A.= 'ZF' (Az — Aa) sin 60
Here %, and 8 are quantities of the order of I*/R? (I {s the characteristic dimension

of the smaller body).
We note that if
M, (Ay — Ay) sin? 8, = M, (B, — B,) sin? q,
then x, = 8 = 0 in solution (2, 6).
Solutions (2, 3)~(2, 5) exist under the conditions
Mo&)o’Ro’:f {M),Mg _8/’ Raz [(2A8— Al - Az) M1 + (Bl - B-z) Ml])
ks=0, kqosin 09— kicos 09 =1/ (41— A2) wosin? By
Solution (2,6) exists under the conditions
My0g3R,? costy = f {M My — %y MyR® [(A; — Ay) sin? 8y + Y3 (245 — 4, — A.)] —
—%, Mxﬁ;2 [B, cos? (@g —%o) + Ba sin® (@g — %o) — /s (2B, + Ba)ly

ky = 0, @ [k, sin (8, + %o) — ks €05 (8y + %)] + Vs (A2 — As) 067X
Xsin? (8y + %o) + ¥ f MyR™3 (A3 — Ay) sin2 8, = 0
Mowo2sin 2, + 3f MyR® (A1 — A) sin 2 (i — %o) (43 — Aj) sin 26+
+ 3fM,R.5 (B; — B,) sin2 (2g — %o) = 0
Solutions (2, 3)—(2, 6) describe the rotation of the spheroid and gyrostat about their
common center of mass G at the angular velocity w, = (K/8)y; in the case of solutions

(2. 3), (2. 5), (2. 6) the spheroid also rotates about its dynamic symmetry axis y, at the
proper rotation velocity
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¢ = K /B, — 0, cos &, cos fi,

In the case of solution (2,4) ¢" = 0. For solutions (2, 3)—(2. 5) the planes of motion
of the centers of mass of the spheroid and gyrostat cofncide and the axis of inertia 3 of
the gyrostat is directed along the line of centers of mass PC. The axis y. of proper rota-
tion of the spheroid is perpendicular to the orbital plane for solution (2, 3), lies along the
line of centers'PC for solution (2. 4), and is perpendicular to the line of centers PC, for-
ming the constant angle §, with the axis 7, for solution (2, 5).

For solution (2. 6) the line PC of the centers of mass of the gyrostat and spheroid forms
the constant angle x, with the orbital planes of the centers of mass of the spheroid and
gyrostat which are parallel (the distance between them is equal to R, sin %, and is on
the orderof I3/ H); the principal axis of inertia z, of the gyrostat is directed along the
velocity vector of its center of mass, and the quantity 6, is equal to the angle between
the axes 1, and r,. Such motions in the case of a gyrostatic moving in a central New-
tonian force field were first obtained by Stepanov [2] and Roberson [3, 4],

8, The sufficient conditions of stability of the above steady motions of a spheroid
and gyrostat are ebtainable as the Sylvester conditions of positive definiteness of the
second varfation of the function W,.

It is easy to verify that of the conditions of stability of the steady motions of the sphe-
roid + gyrostat system with respect to the variables

R, %, a, B, By, Bss Bss V1» Y20 V2 Ry %', 0, @,y By 9 By By Ba's 71y Vs Vs

the conditions (9*W/ox?), > 0, (0%W,/3R?), > 0 are always fulfilled if the dimensions
of the bodies are much smaller than the distance between their centers of mass; the
remaining stability conditions are reducible to the following forms,
For solution (2, 3),
(Br— B 0o + By >0, 00 (B— B) E20 4 g0 6.0

ktz k
A1 > As, A > A, Az+m>As. A+ m>41+5
for solution (2. 4),

Bi>B,,  A;> A Ar> 4, (3.2)
s e Y WL RE Ly
for solution (2. 5)
B:> By, Ar> A, A > Ay
A,+Ec—'f,—’s—a—o>,4,. A,+—mﬁ>m+5 a.3)

for solution (2, 6)

By> By Ay — Aysin® 0, — Agcos? 8, > 0, (A, — Ay) (1 — tg28,) > 0
3IM, k
(4:— 49 (14 32 19 00) + st >0 (3.4

. k M
(A1 — A sin* 89 — Ay cos® 09) (Az — A1 4 m) + "MTo (A1 — Ap) (As — As) 5in® 03 >0
where

3f (A1 — Ag)*sin® @ 5
5 = SS)R:, (0’;"1/31'?’)00 { MiMs — 535 [(24s — A1 — A2) M3 + (B — By) M,]}

In analyzing the above sufficient conditions (3, 1)—(3.4) of stability of steady motions
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(2. 3)—(2. 6) of the spheroid + gyrostat system, we see that each group of sufficient con-
ditfons of stability consists of two groups ; one group contains the moments of inertia of
the spheroid alone, the other the moments of inertia of the gyrostat alone, Each of these
groups constitutes stability conditions similar to those obtained by Rumiantsev [5] for the
cotresponding motions of a symmetric satellite and gyrostat satellite about a fixed

attracting center, In our case the role of the attracting center is played by the center
of mass G of the system,

4, Let us consider the case of a dynamically symmetric gyrostat when 4; = 4,54,

In addition to integrals (2,1) and (2,2) our system also has the integral
LIdp," = A, (5 cos oy cos By + ;" + o’sin B,) + k, = K (4.1)
which expresses the constancy of the projection of the moment of momenta of the gyro-
stat on its dynamic symmetry axis z,,
Ignoring the cyclical coordinates o, @, g1, we obtain the following expression for the
altered potential energy U of the system:
Ko K "' (XK o kq)*

U(H’x' a'Bv al’Bl)=z~;—l.+2—B;+T+n
where

M
n=3f ’2.—17” { A1 [sin® (@1 — %) sin? By 4 cos? (@1 — ®)] + A; sin® (23 — x) cos*B1 —

24 ;{- Az} +3?{gl {Bx [sin? (a — %) sin®B 4 cos? (@ — x)] 4

2 B
+ By sin? (@ — %) cos?f — Blj : } —] M;?Mz
S1 = MyR% cos®x + A: (sin? oy - cos®a,sin? B;) 4 B, (sin? @ + cos? @ sin® B)
Ky = Ky — K, cosacosg — K, cosa cos py
The steady motions of the system can be determined from the equation
U=0
This equation has the following solutions:

R=Ry,x=0,a=0,p=0,a1=0, f; =0 (4.2)
R=Ry, =0, a=0, cos fp = Ko/weB1, o1 =0, cosPr= K, /041 (4.3)
R=Ryyx=0, a=0, =0, a=0, cosp= Kq, /0ed1 (4.4)
R=Ryx=0 a=0, cosf = K’/(I)OBI, a=0, =0 (4.5)
R= Ry x=0 a=0, p=0, ax="Ym P=0, K, =0 (4.6)
R=PRy x=0, a=yn, p=0, K, =0, a4 =0, f =0 4.7
R=Ry, x=0, a=0, cos P = K joBy, ar=1'yn,p=0, K, =0 (48)
R=Ry x=0, a=1yn, =0, K,=0, a1 =0, cosf) = Ko Jwodr 4.9
R=PRe, »=1%o, COSQ=COSdp= 3 w°K: +8;, B=0
wo*B1 — 3{M1R;3 (Bs — By) ’
. w,Ko, (4.10)

A1 — 3/ MR (A: — Ay) 0 Br=0
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Solutions (4.2)—(4. 9) exist under the condition

Myog®Re® = | {(M1M — /s R®[(As — A1) M+ + (B: — B)) My)}
and solution (4, 10) under the condition

aM. 24
Mo Ro® cos? %o = | {MIM,—ﬁ;: [ A1 cos® (10 — %o) + As sin® (atyg — %) — - l;A’J—

— %'[Bx c08? (dp — %o) -+ Bs sin? (e — %0) — 23_1-;;3_2]}

M,0,3Rb 8in 2%, + 3f My (A1 — A,) 8in2 (a0 — %o) +|
+3fM1 (Bx — B,) sin2 (@, — %) = 0

where %,, 8y and 3,:are quantities on the order of P/ R3,

These solutions describe the steady motions of the spheroid and dynamically symmet-
ric gyrostat about their common center of mass G at the angular velocity ®, = (Ky/S1)y,
with the spheroid rotating about its axis of symmetry y, at the proper rotation velocity

¢ = KJB, — @y cos a cos f
and the dynamically symmetric gyrostat rotating about its axis of symmetry z, at the
proper rotation velocity ¢ = K, /Ay — @, cos oy cos f

In solutions (4. 2)—(4. 9) the planes of motion of the centers of mass of the spheroid
and dynamically symmetric gyrostat coincide, In solution (4,10) these orbital planes
are parallel, lying at the distance R, sinx, on the order of I3/R from each other,

For solution (4, 2) the axes of proper rotation of the spheroid y, and symmetric gyrostat
x4 are perpendicular to the orbital plane, This solution was first obtained by Kondurar’
6. 7.

For solution (4, 3) the axes of proper rotation of the spheroid y3and symmetric gyrostat
z, are perpendicular to the line of centers PC and form the constant angles g, and fe
respectively, with the axis ,.

For solution (4, 4) the axis of proper rotation y, of the spheroid is perpendicular to the
orbital plane, and the axis of proper rotation z, of the symmetric gyrostat perpendicular
to the line of centers PC, forming the constant angle f;, with the axis 7,.

For solution (4, 5) the axis of proper rotation y, of the spheroid is perpendicular to the
line of centers PC and forms the constant angle f, with the axis 1. ; the axis of proper
rotation z, of the symmetric gyrostat is perpendicular to the orbital plane,

For solution (4, 6) the axis of proper rotation y, of the spheroid is perpendicular to the
orbital plane, and the axis of proper rotation z, of the symmetric gyrostat is directed
along the line of centers PC; in this case the gyrostat does not rotate about the axis z.

For solution (4, 7) the axis of proper rotation y, of the spheroid is directed along the
line of centers PC, but the spheroid does not rotate about the axis y, ; the axis of proper
rotation z, of the symmetric gyrostat is perpendicular to the orbital plane,

For solution (4, 8) the axis of proper rotation y, of the spheroid is perpendicular to the
line of centers PC and forms the constant angle B, with the axis 7z ; the axis of proper
rotation z, of the symmetric gyrostat is directed along the line of centers, but the gyro-
stat does not rotate about the axis z,.

For solution (4. 9) the axis of proper rotation y, of the spheroid is directed along the
line of centers, but the center does not rotate about the axis ¥, ; the axis of proper rota-
tion z, of the symmetric gyrostat is perpendicular to the line of centers and forms the



Some steady motions of a gravitating gyrostat and spheroid and their stability 1089

constant angle B, with the axis 1.

For solution (4, 10) the line of centers PC forms the constant angle %, with the orbital
planes of the centers of mass of the spheroid and symmetric gyrostat; the axes of sym-
metry y, of the spheroid and z, of the gyrostat lie in the plane Q and form the constant
angles o, and o, respectively, with the axis n,,

§. The sufficient conditions of stability of the above steady motions of a spheroid
and symmetric gyrostat are obtainable as the Sylvester conditions of positive definiteness
of the second variation of the function U. These conditions can be expressed as follows:

for solution (4. 2),

K,> Bia, K, — Biwo + 3MowoM," (Bs — B1) >0
Ky, > Ao, K, — Ao + 3MowoM" (Ar — A1) >0 (¢.1)
for solution (4, 3),

By > By, Ay > A (5.2)

for solution (4.4),
K> By, K, — 0oB1+ 3Mowo M1 (B: —B) >0, A:> 4 (5.3)

for solution (4. 5),
B:>B, K, > A, K, — A+ 3MowoM (A — A) >0 (5.4)

for solution (4.6),
K> Biw, K,— By + 3MowoM;! (Bs — B) >0, 41> As (5:5)

for solution (4, 7),
B1>B,, K, >A100, K, — A1 @+ 3Mq@M{' (43— 41)>0  (5.8)
for solution (4, 8),

By > By, A12> 4, (5.7)
for solution (4. 9),
By > By, A1> 4, (5.8)
for solution (4,10),
By > B,, A1 > 4, (5.9)

Conditions (5,1)—(5. 9) are the sufficient conditions of stability of steady motions

(4.2)—(4.10) with respect to the variables
R, x, &, ﬁv o, 5!9 R.v "‘9 U.v G', B.’ Q.v al.y ﬂl.o WI.

By virtue of Kelvin's theorem [8], steady motions (4, 2)—(4.10) become unstable if
we replace one of the {nequalities in conditions (5,1)—(5. 9) by one of opposite sign,
Steady motions (4, 4)—(4, 7) are also unstable if we replace all three inequalities in con-
ditions (5, 3)—(5, 6) by inequalities of opposite sign, Steady motion (4, 2) is unstable if
we replace any three inequalities of condition (5.1) by inequalities of opposite sign,

The author s grateful to V, V, Rumfantsev for his comments on the present study,
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ON THE CONSTRUCTION OF SOLUTIONS OF QUASILINEAR

NONAUTONOMOUS SYSTEMS IN RESONANCE CASES
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We consider a system with n degrees of freedom, of the following form:

0.1y
2 =AY, B (B0 ) T WX (2,9, ) e iy () By )+ e (
Y, = A’x. FuY @) Y, (2 v ) 4o 9y () + Ry, (O ..
=, ., %), Y= (YL 0 Y,) s =1,..,n)
Here X,,..., Ya1,... are polynomials of an arbitrarily high degree in z and y with

continuous coefficients which are 2n-periodic in ¢, The functions fsg,.:-s Pso,--+ are
continuous and have the same period, Quantity p is a small parameter, We assume that
both internal and external resonance are present in the system,

There exist various well worked out methods of investigating the oscillations of quasi-
linear nonautonomous systems in resonance cases (method of small parameter, method
of averaging, e, a, ). these reduce the problem of constructing the oscillations accurate
to the first degree of the small parameter to obtaining solutions of, so called, fundamen-
tal (generating) amplitude equations, Inthe case of a system with several degrees of free-
dom, these equations represent a system of nonlinear algebraic equations, for which gene-
ral solution does not esist. Thus, one problem leads to another which is no less complex.

In the present paper we use the results of [1, 2] to develop a method of constructing
both periodic and almost-periodic solutions. This allows us to obtain the values of the
fundamental amplitudes from a system of linear algebraic equations, when the order of
the highest form accompanying p is not greater than three, If X, and Yy, contain terms
of the order higher than three, then the equations defining the fundamental amplitudes
will be also nonlinear, but simpler than those appearing in the method of small parame-
ters, method of averaging, etc,



